ManzoniMatplotlibArtist#
- class georges.vis.ManzoniMatplotlibArtist(tracks_color: str = 'b', **kwargs)[source]#
Bases:
MatplotlibArtist
A matplotlib implementation of a Matplotlib artist.
- Parameters:
ax (param) – the matplotlib ax used for plotting. If None it will be created with init_plot (kwargs are
forwarded). –
tracks_color – color for the plotting of tracks
kwargs – forwarded to MatplotlibPlot and to init_plot.
Attributes Summary
The color for the rendering of the tracks.
Methods Summary
compute_halo
(data, percentile)Return a dataframe containing the 1st, 5th, 95th and 99th percentiles of each dimensions.
draw_ellipse
(x, y)draw_table
(x, y, dim, unit_col_0, ...)ellipse
(ra, rb, angle, x0, y0, **kwargs)Create an ellipse from beam parameters.
filled_plot
(ax, x, y0, y, c[, fill])five_spot_map
(bl_track0, bl_track1, ...)histogram_fit
(data[, bounds_binning, ...])All models are available on https://lmfit.github.io/lmfit-py/builtin_models.html#lmfit.models
losses
([observer, log_scale])Plot the losses along the beamline
phase_space
([observer, element, location, ...])- param observer:
rotation_angle
(e_val, evec)symmetry
([observer])Plot the symmetry of the beam along the beamline
tracking
([observer, plane, fill_between, ...])Plot the beam envelopes from tracking data.
twiss
([observer, with_beta, with_alpha, ...])Plot the Twiss function along the beamline
Attributes Documentation
- tracks_color#
The color for the rendering of the tracks.
- Returns:
color as a string
Methods Documentation
- static compute_halo(data, percentile)[source]#
Return a dataframe containing the 1st, 5th, 95th and 99th percentiles of each dimensions.
- static ellipse(ra, rb, angle, x0, y0, **kwargs)[source]#
Create an ellipse from beam parameters. :param ra: semi-major axis :param rb: semi-minor axis :param angle: oritentation angle :param x0: center X coordinate :param y0: center Y coordinate :return: matplotlib.patches.Ellipse object
- static histogram_fit(data, bounds_binning=50, verbose=False, model=<class 'lmfit.models.GaussianModel'>)[source]#
All models are available on https://lmfit.github.io/lmfit-py/builtin_models.html#lmfit.models
- losses(observer: LossesObserver | None = None, log_scale: bool = False, **kwargs)[source]#
Plot the losses along the beamline
- Parameters:
observer – Observer used for the tracking
log_scale – Log scale for transmission
- phase_space(observer: BeamObserver | None = None, element: str | None = None, location: str = 'OUT', dim=None, nbins=None, draw_ellipse: bool = True)[source]#
- Parameters:
observer –
element –
location –
dim –
nbins –
draw_ellipse –
Returns:
- symmetry(observer: LossesObserver | None = None, **kwargs)[source]#
Plot the symmetry of the beam along the beamline
- Parameters:
observer – Observer used for the tracking
- tracking(observer: Observer | None = None, plane: str = 'X', fill_between: bool = False, mean: bool = True, std: bool = False, halo: bool = True, **kwargs)[source]#
Plot the beam envelopes from tracking data.
- Parameters:
observer – Observer used for the tracking
plane –
fill_between –
mean –
std –
halo –
**kwargs –
Returns:
- twiss(observer: TwissObserver | None = None, with_beta: bool = True, with_alpha: bool = False, with_dispersion: bool = False, tfs_data: DataFrame | Table | None = None, relativistic_beta: float = 1.0, **kwargs)[source]#
Plot the Twiss function along the beamline
- Parameters:
observer – Observer used for the tracking
with_beta – plot the beta
with_alpha – plot the alpha
with_dispersion – plot the dispersion
tfs_data – if provided, plot the data from MAD-X.
relativistic_beta (float) – Relativistic beta value to scale the dispersion. Default to 1.