B3G

class zgoubidoo.commands.contrib.iba.B3G(label1: str = '', label2: str = '', *params, **kwargs)[source]

Bases: zgoubidoo.commands.contrib.iba.DipoleIBA

Proteus One 60 degree dipole.

Examples

>>> B3G()

Command attributes

LABEL1='B3G'

Primary label for the Zgoubi command (default: auto-generated hash).

Type

str

LABEL2=''

Secondary label for the Zgoubi command.

Type

str

HEIGHT='20 centimeter'

Height of the magnet (distance between poles), used by plotting functions.

Type

Quantity

POLE_WIDTH='150 centimeter'

Pole width (used for plotting only).

Type

Quantity

PIPE_THICKNESS='2 centimeter'

Thickness of the pipe, used by plotting functions.

Type

Quantity

PIPE_COLOR='grey'

Color of the pipe, used by plotting functions.

Type

str

REFERENCE_FIELD_COMPONENT='BZ'

Orientation of the reference field (used by field maps)

Type

str

KINEMATICS='None'

A kinematics object.

Type

NoneType

APERTURE_LEFT='10 centimeter'

Aperture size of the magnet, left side (used for plotting only).

Type

Quantity

APERTURE_RIGHT='10 centimeter'

Aperture size of the magnet, right side (used for plotting only).

Type

Quantity

APERTURE_TOP='10 centimeter'

Aperture size of the magnet, top side (used for plotting only).

Type

Quantity

APERTURE_BOTTOM='10 centimeter'

Aperture size of the magnet, bottom side (used for plotting only).

Type

Quantity

IL='0'

Print field and coordinates along trajectories

Type

int

AT='0 degree'

Total angular extent of the dipole (positive value in all cases)

Type

Quantity

RM='1600 millimeter'

Reference radius

Type

Quantity

ACENT='0 degree'

Azimuth for positioning of EFBs

Type

Quantity

B0='14 kilogauss'

Reference field

Type

Quantity

N='0'

Field index (radial quadrupolar)

Type

int

B='0'

Field index (radial sextupolar)

Type

int

G='0'

Field index (radial octupolar)

Type

int

LAM_E='9 centimeter'

Entrance fringe field extent (normally ≃ gap size)

Type

Quantity

C0_E='0.67634054'

Fringe field coefficient C0

Type

float

C1_E='1.15776841'

Fringe field coefficient C1

Type

float

C2_E='-0.16937986'

Fringe field coefficient C2

Type

float

C3_E='0.07696388'

Fringe field coefficient C3

Type

float

C4_E='0'

Fringe field coefficient C4

Type

int

C5_E='0'

Fringe field coefficient C5

Type

int

SHIFT_E='0 centimeter'

Shift of the EFB

Type

Quantity

OMEGA_E='0 degree'
Type

Quantity

THETA_E='0 degree'

Entrance face wedge angle

Type

Quantity

R1_E='1000000000.0 centimeter'

Entrance EFB radius

Type

Quantity

U1_E='1000000000.0 centimeter'

Entrance EFB linear extent

Type

Quantity

U2_E='1000000000.0 centimeter'

Entrance EFB linear extent

Type

Quantity

R2_E='1000000000.0 centimeter'

Entrance EFB radius

Type

Quantity

LAM_S='9 centimeter'

Exit fringe field extent (normally ≃ gap size)

Type

Quantity

C0_S='0.7789082'

Fringe field coefficient C0

Type

float

C1_S='0.94490545'

Fringe field coefficient C1

Type

float

C2_S='-0.13034787'

Fringe field coefficient C2

Type

float

C3_S='0.02948957'

Fringe field coefficient C3

Type

float

C4_S='0'

Fringe field coefficient C4

Type

int

C5_S='0'

Fringe field coefficient C5

Type

int

SHIFT_S='0 centimeter'

Shift of the EFB

Type

Quantity

OMEGA_S='0 degree'
Type

Quantity

THETA_S='0 degree'

Exit face wedge angle

Type

Quantity

R1_S='1000000000.0 centimeter'

Exit EFB radius

Type

Quantity

U1_S='1000000000.0 centimeter'

Exit EFB linear extent

Type

Quantity

U2_S='1000000000.0 centimeter'

Exit EFB linear extent

Type

Quantity

R2_S='1000000000.0 centimeter'

Exit EFB radius

Type

Quantity

LAM_L='0.0 centimeter'

Lateral fringe field extent (normally ≃ gap size)

Type

Quantity

XI_L='0'

Flag to activate/deactivate the lateral EFB (0 to deactivate)

Type

int

C0_L='0'

Fringe field coefficient C0

Type

int

C1_L='1'

Fringe field coefficient C1

Type

int

C2_L='0'

Fringe field coefficient C2

Type

int

C3_L='0'

Fringe field coefficient C3

Type

int

C4_L='0'

Fringe field coefficient C4

Type

int

C5_L='0'

Fringe field coefficient C5

Type

int

SHIFT_L='0 centimeter'

Shift of the EFB

Type

Quantity

OMEGA_L='0 degree'
Type

Quantity

THETA_L='0 degree'

Lateral field boundary wedge angle

Type

Quantity

R1_L='1000000000.0 centimeter'

Lateral EFB radius

Type

Quantity

U1_L='1000000000.0 centimeter'

Lateral EFB linear extent

Type

Quantity

U2_L='1000000000.0 centimeter'

Lateral EFB linear extent

Type

Quantity

R2_L='1000000000.0 centimeter'

Lateral EFB radius

Type

Quantity

RM3='1000000000.0 centimeter'

Reference radius of the lateral EFB

Type

Quantity

IORDRE='2'
Type

int

RESOL='10'
Type

int

XPAS='1.0 millimeter'

Integration step

Type

Quantity

KPOS='2'
Type

int

RE='0 centimeter'
Type

Quantity

TE='0 radian'
Type

Quantity

RS='0 centimeter'
Type

Quantity

TS='0 radian'
Type

Quantity

DP='0.0'
Type

float

Default initializer for all Commands.

Attributes Summary

KEYWORD

PARAMETERS

Methods Summary

post_init([magnet_opening, poles_opening, …])

TODO :param magnet_opening: total angular opening of the magnet (i.e.

Attributes Documentation

KEYWORD: str = 'DIPOLE'
PARAMETERS: dict = {'ACENT': (<Quantity(0, 'degree')>, 'Azimuth for positioning of EFBs', 4), 'APERTURE_BOTTOM': (<Quantity(10, 'centimeter')>, 'Aperture size of the magnet, bottom side (used for plotting only).'), 'APERTURE_LEFT': (<Quantity(10, 'centimeter')>, 'Aperture size of the magnet, left side (used for plotting only).'), 'APERTURE_RIGHT': (<Quantity(10, 'centimeter')>, 'Aperture size of the magnet, right side (used for plotting only).'), 'APERTURE_TOP': (<Quantity(10, 'centimeter')>, 'Aperture size of the magnet, top side (used for plotting only).'), 'AT': (<Quantity(0, 'degree')>, 'Total angular extent of the dipole (positive value in all cases)', 2), 'B': (0, 'Field index (radial sextupolar)', 7), 'B0': (<Quantity(14, 'kilogauss')>, 'Reference field', 5), 'C0_E': (0.67634054, 'Fringe field coefficient C0', 12), 'C0_L': (0, 'Fringe field coefficient C0', 41), 'C0_S': (0.7789082, 'Fringe field coefficient C0', 26), 'C1_E': (1.15776841, 'Fringe field coefficient C1', 13), 'C1_L': (1, 'Fringe field coefficient C1', 42), 'C1_S': (0.94490545, 'Fringe field coefficient C1', 27), 'C2_E': (-0.16937986, 'Fringe field coefficient C2', 14), 'C2_L': (0, 'Fringe field coefficient C2', 43), 'C2_S': (-0.13034787, 'Fringe field coefficient C2', 28), 'C3_E': (0.07696388, 'Fringe field coefficient C3', 15), 'C3_L': (0, 'Fringe field coefficient C3', 44), 'C3_S': (0.02948957, 'Fringe field coefficient C3', 29), 'C4_E': (0, 'Fringe field coefficient C4', 16), 'C4_L': (0, 'Fringe field coefficient C4', 45), 'C4_S': (0, 'Fringe field coefficient C4', 30), 'C5_E': (0, 'Fringe field coefficient C5', 17), 'C5_L': (0, 'Fringe field coefficient C5', 46), 'C5_S': (0, 'Fringe field coefficient C5', 31), 'COLOR': ('#4169E1',), 'DP': (0.0, '', 63), 'G': (0, 'Field index (radial octupolar)', 8), 'HEIGHT': (<Quantity(20, 'centimeter')>, 'Height of the magnet (distance between poles), used by plotting functions.'), 'IL': (0, 'Print field and coordinates along trajectories', 1), 'IORDRE': (2, '', 55), 'KINEMATICS': (None, 'A kinematics object.'), 'KPOS': (2, '', 58), 'LABEL1': ('B3G', 'Primary label for the Zgoubi command (default: auto-generated hash).'), 'LABEL2': ('', 'Secondary label for the Zgoubi command.'), 'LAM_E': (<Quantity(9, 'centimeter')>, 'Entrance fringe field extent (normally ≃ gap size)', 9), 'LAM_L': (<Quantity(0.0, 'centimeter')>, 'Lateral fringe field extent (normally ≃ gap size)', 39), 'LAM_S': (<Quantity(9, 'centimeter')>, 'Exit fringe field extent (normally ≃ gap size)', 25), 'N': (0, 'Field index (radial quadrupolar)', 6), 'OMEGA_E': (<Quantity(0, 'degree')>, '', 19), 'OMEGA_L': (<Quantity(0, 'degree')>, '', 48), 'OMEGA_S': (<Quantity(0, 'degree')>, '', 33), 'PIPE_COLOR': ('grey', 'Color of the pipe, used by plotting functions.'), 'PIPE_THICKNESS': (<Quantity(2, 'centimeter')>, 'Thickness of the pipe, used by plotting functions.'), 'POLE_WIDTH': (<Quantity(150, 'centimeter')>, 'Pole width (used for plotting only).'), 'R1_E': (<Quantity(1e+09, 'centimeter')>, 'Entrance EFB radius', 21), 'R1_L': (<Quantity(1e+09, 'centimeter')>, 'Lateral EFB radius', 50), 'R1_S': (<Quantity(1e+09, 'centimeter')>, 'Exit EFB radius', 35), 'R2_E': (<Quantity(1e+09, 'centimeter')>, 'Entrance EFB radius', 24), 'R2_L': (<Quantity(1e+09, 'centimeter')>, 'Lateral EFB radius', 53), 'R2_S': (<Quantity(1e+09, 'centimeter')>, 'Exit EFB radius', 38), 'RE': (<Quantity(0, 'centimeter')>, '', 64), 'REFERENCE_FIELD_COMPONENT': ('BZ', 'Orientation of the reference field (used by field maps)'), 'RESOL': (10, '', 56), 'RM': (<Quantity(1600, 'millimeter')>, 'Reference radius', 3), 'RM3': (<Quantity(1e+09, 'centimeter')>, 'Reference radius of the lateral EFB', 54), 'RS': (<Quantity(0, 'centimeter')>, '', 66), 'SHIFT_E': (<Quantity(0, 'centimeter')>, 'Shift of the EFB', 18), 'SHIFT_L': (<Quantity(0, 'centimeter')>, 'Shift of the EFB', 47), 'SHIFT_S': (<Quantity(0, 'centimeter')>, 'Shift of the EFB', 32), 'TE': (<Quantity(0, 'radian')>, '', 65), 'THETA_E': (<Quantity(0, 'degree')>, 'Entrance face wedge angle', 20), 'THETA_L': (<Quantity(0, 'degree')>, 'Lateral field boundary wedge angle', 49), 'THETA_S': (<Quantity(0, 'degree')>, 'Exit face wedge angle', 34), 'TS': (<Quantity(0, 'radian')>, '', 67), 'U1_E': (<Quantity(1e+09, 'centimeter')>, 'Entrance EFB linear extent', 22), 'U1_L': (<Quantity(1e+09, 'centimeter')>, 'Lateral EFB linear extent', 51), 'U1_S': (<Quantity(1e+09, 'centimeter')>, 'Exit EFB linear extent', 36), 'U2_E': (<Quantity(1e+09, 'centimeter')>, 'Entrance EFB linear extent', 23), 'U2_L': (<Quantity(1e+09, 'centimeter')>, 'Lateral EFB linear extent', 52), 'U2_S': (<Quantity(1e+09, 'centimeter')>, 'Exit EFB linear extent', 37), 'XI_L': (0, 'Flag to activate/deactivate the lateral EFB (0 to deactivate)', 40), 'XPAS': (<Quantity(1.0, 'millimeter')>, 'Integration step', 57)}

Methods Documentation

post_init(magnet_opening=<Quantity(70, 'degree')>, poles_opening=<Quantity(60, 'degree')>, entrance_pole_trim=<Quantity(1.125, 'degree')>, exit_pole_trim=<Quantity(1.125, 'degree')>, entrance_fringe_lambda=<Quantity(9, 'centimeter')>, exit_fringe_lambda=<Quantity(9, 'centimeter')>, entrance_pole_curvature=<Quantity(1e+09, 'centimeter')>, exit_pole_curvature=<Quantity(1e+09, 'centimeter')>, **kwargs)[source]

TODO :param magnet_opening: total angular opening of the magnet (i.e. of the field map) :param poles_opening: angular opening of the poles :param entrance_pole_trim: angular shift of the entrance pole :param exit_pole_trim: angular shift of the exit pole :param entrance_fringe_lambda: effective length of the entrance fringe field :param exit_fringe_lambda: effective length of the exit fringe field :param entrance_pole_curvature: curvature of the pole at the entrance of the magnet :param exit_pole_curvature: curvature of the pole at the exit of the magnet

Example

>>> b3g = B3G()
>>> b3g.fit()